The six trigonometric functions related to (x, y) = (20, 48): sin θ = 12/13, cos θ = 5/13, tan θ = 12/5, cot θ = 5/12, sec θ = 13/5, csc θ = 13/12.
Given the coordinates in rectangular form, that is, (x, y), where each component belongs to an orthogonal axis of reference. By trigonometry we have six functions to be calculated:
[tex]\sin \theta = \frac{y}{\sqrt{x^{2}+y^{2}}}[/tex] (1)
[tex]\cos \theta = \frac{x}{\sqrt{x^{2}+y^{2}}}[/tex] (2)
[tex]\tan \theta = \frac{\sin \theta}{\cos \theta}[/tex] (3)
[tex]\cot \theta = \frac{1}{\tan \theta}[/tex] (4)
[tex]\sec \theta = \frac{1}{\cos \theta}[/tex] (5)
[tex]\csc \theta = \frac{1}{\sin \theta}[/tex] (6)
If we know that x = 20 and y = 48, then the six trigonometric functions are, respectively:
[tex]\sin \theta = \frac{48}{\sqrt{20^{2}+48^{2}}}[/tex]
[tex]\sin \theta = \frac{12}{13}[/tex]
[tex]\cos \theta = \frac{20}{\sqrt{20^{2}+48^{2}}}[/tex]
[tex]\cos \theta = \frac{5}{13}[/tex]
[tex]\tan \theta = \frac{12}{5}[/tex]
[tex]\cot \theta = \frac{5}{12}[/tex]
[tex]\sec \theta = \frac{13}{5}[/tex]
[tex]\csc \theta = \frac{13}{12}[/tex]
The six trigonometric functions related to (x, y) = (20, 48): sin θ = 12/13, cos θ = 5/13, tan θ = 12/5, cot θ = 5/12, sec θ = 13/5, csc θ = 13/12. [tex]\blacksquare[/tex]
To learn more on trigonometric functions, we kindly invite to check this verified question: https://brainly.com/question/6904750