Respuesta :
Answer:
9.9 s
Explanation:
mass (m) = 1000 kg
initial speed (u) = 90 km/h
final speed (v) = 45 km/h
relationship between the speed (v) of the boat and the frictional force (fk) ⇒ fk = 70v
- the acceleration of the system will be given by (a) = [tex]\frac{fk}{m}[/tex]
- acceleration is also the first differential of velocity with respect to time,
a =[tex]\frac{dv}{dt}[/tex]
- therefore acceleration (a) = [tex]\frac{fk}{m}[/tex] = [tex]\frac{dv}{dt}[/tex]
- recall that fk = 70v
(a) = [tex]\frac{dv}{dt}[/tex] = [tex]\frac{fk}{m}[/tex] = [tex]\frac{70v}{m}[/tex]
(a) = [tex]\frac{dv}{dt}[/tex] = [tex]\frac{70v}{m}[/tex]
- integrating both side of the equatin we have
[tex]\int\limits^v_v₀ {\frac{v}{v₀} } \, = \int\limits^t_0 {\frac{70}{m} } \, t[/tex]
[tex]ln(\frac{v}{v₀}) = (\frac{70}{m}) t[/tex]
t = [tex]\frac{m}{70} x ln(\frac{v}{v₀})[/tex]
- the time required for the boat to slow down = t = [tex]\frac{1000}{70} x ln(\frac{45}{90})[/tex] = - 9.9 s = 9.9 s